Jack Dongarra’s supercomputing work just won a Turing. Now he’s looking to Big Cloud.

The latest winner of computing’s Turing Award thinks that scientific research could use help from the hyperscale cloud providers and computing power is having an outsize impact on the environment.

Jack Dongarra poses in 2019 with the Oak Ridge National Lab’s IBM Summit Supercomputer.

Dongarra has spent the last 50 years helping advance exascale supercomputing.

Photo courtesy of Jack Dongarra

Even Jack Dongarra has a hard time wrapping his head around the number used to represent “exascale” computing: 1018.

But Dongarra, an expert in linear algebra algorithms and distinguished professor of computer science in the Electrical Engineering and Computer Science Department at the University of Tennessee, is sure of one thing. “That's a staggering amount of computing power.”

Indeed. Ten-to-the-eighteenth-power represents 1,000,000,000,000,000,000 operations per second, the amount of computing power possible in just one exascale supercomputer. In supercomputing parlance, it’s called an exaflop.

Dongarra, in his early 70s, has spent the last 50 years helping advance the numerical algorithms and software, parallel computing programming and performance benchmarking necessary to create an exascale supercomputer, each the gargantuan size of two tennis courts.

Now, as a credit to that work, Dongarra has won this year’s prestigious Turing Award, often referred to as the “Nobel Prize of Computing,” from the Association for Computing Machinery. Along with a fancy silver bowl, the award comes with a $1 million prize funded entirely by Google, which goes directly to Dongarra.

Right now, Dongarra and his group at University of Tennessee are busy contributing to the software and applications needed to operate three exascale supercomputers that the Department of Energy is having built to enable scientific research for things like wind energy, nuclear physics and weapons security, earthquake studies, cancer cures and more.

Protocol spoke on Monday with Dongarra — also a researcher with the University of Manchester and the Oak Ridge National Laboratory, home to one of those new exascale supercomputers — about why scientific supercomputing could use help from the big cloud providers, about the impact of AI computing energy use on the environment, about how the computing research community could spur more Turing wins for women and why he hopes research collaborations with China continue.

This interview was condensed and edited for clarity.

What do people get wrong when they talk about supercomputers?

I don't think people really have a good picture of a supercomputer. It's super, so it's pretty big. They have tremendous requirements in terms of power.

[The current supercomputer at Oak Ridge National Laboratory] has the power budget of about 20 megawatts — 20 megawatts is the power consumption. If you at your home used one megawatt for one year, you'd get a bill from the electric company for $1 million. So that computer at Oak Ridge, to turn it on, costs $20 million, just in the power consumption.

And that’s just the hardware. Then there's power that's needed, of course, on top of that, and people to run it, and applications to design, and software to build, and all those other things.

When you started this work in the early 1970s, did you ever envision that AI would advance to the point where it's so accessible, that it's almost this mainstream thing where businesspeople are incorporating AI tools into what they do every day?

So back in the 70s, AI was a novelty. I have to say that I didn't really see how it would be practical to use that in any kind of real application setting. Computing is the thing, of course, that fueled the AI and brought it to a point where you can do the kinds of things that were only talked about in theory; you can now practically realize that in a short amount of time. So the hardware, the computing hardware was there to carry out all of the associated computations, so that AI could actually do the things that [we dreamed of it] doing.

It’s an inflection point we’re at, one which has us either going in the traditional way of building our own equipment and using it just as it is, or going to cloud-based computing.

Today, it plays an important role in terms of how science is moving forward. It's part of a tool kit, helping us in getting a better understanding and coming to a point where we can get an approximation to a solution much, much quicker than we can by doing traditional modeling and simulation.

Your work has helped make computational processing and supercomputing more efficient. But there are serious concerns about the climate impact resulting from the massive amounts of energy required to enable the compute necessary for deep learning and developing things like large language AI models. Are you worried about the carbon footprint of your work or of supercomputing in general?

Of course, we're concerned about that. That's a serious issue. We have machines that are consuming 20 megawatts today. The next generation of things are going to consume 40 megawatts of power.

And you take a look at the big data centers that are in place that Microsoft, Google, Amazon have, and those dwarf the computers that are used in the scientific area. To sort of help with that on the commercial side, Google, Amazon and Microsoft are developing their own hardware, independent from commodity stuff.

In the scientific area, we sort of embrace commodity technology because of its cost. And we take that and build supercomputers. And that may not be the most efficient way of doing things.

So what Amazon, what Google and what Microsoft have gone and engaged in — and Apple — they're building their own processors. By avoiding the commodity processor, and developing specialized hardware that they can use to solve their problem, they can reduce the energy costs, so they can minimize the impact that they’re going to have in terms of that climate effect.

Jack Dongarra uses a Tektronix 4081\u00a0Workstation in 1980 at the Argonne National Lab. Jack Dongarra uses a Tektronix 4081 Workstation in 1980 at the Argonne National Lab.Photo courtesy of Jack Dongarra

In building Oak Ridge or the other two new exascale supercomputers, why isn’t the DOE going to an Amazon or Google Cloud and saying, you guys do this a lot more efficiently. Can we use your hardware, instead of using the less-efficient commodity parts?

A paper that we just wrote, this is done with my colleagues, talks about just this point: the cloud computing and the impact it's having in terms of where we go into the future in terms of scientific-based areas. It’s an inflection point we’re at, one which has us either going in the traditional way of building our own equipment and using it just as it is, or going to cloud-based computing, and using cloud-based systems to satisfy our needs.

The big systems that [the government has] today are in place for their lifetime. And then we basically get rid of that system and replace it with yet another monolithic kind of computer architecture, and use it to drive forward.

It presents a situation where the companies that we're talking about — the Amazons, and the Microsofts and the Googles — are exothermic in terms of the amount of cash they have that they can invest, where the government [is] endothermic, they need resources. And those resources are becoming harder to really get. So the right model may be the cloud services and using them to go forward.

We hear a lot about the U.S. competing directly with China to “win” or “lead” AI. And obviously, the kind of work you do really plays a role in how we advance and use artificial intelligence. What do you think about the idea that the United States is in an AI competition with China?

We try to understand what the Chinese are doing and how they're using their computers and what their computers are capable of. That's part of the game that we have.

The big systems that [the government has] today are in place for their lifetime. And then we basically get rid of that system and replace it with yet another monolithic kind of computer architecture.

I mentioned already, companies like Amazon and Facebook and Google. In China, there's Baidu and Alibaba and Tencent, of course, which have [their own] rules that compare with those companies, and they are using and deploying high-performance computing.

If you take a look at the Chinese supercomputers and look at the way in which they're being used, it's a very similar list to what we have in the U.S. The research that they're planning to do goes along the same lines as the research that's being investigated here in the States.

And I would almost hope that we can collaborate and understand how we move forward with these things in a way that leverages the resources that we have, rather than be in a position of head-to-head competition, where we can't really benefit from each other's products in that way.

The Turing Award has only gone to three women over the years. Do you know any women who it makes sense to consider for future years for the award?

Yes, of course, there are many women who are eligible and who could qualify for the Turing Award. Turing Award is determined by a committee; they vet applications that are submitted. The onus is on the community to put together the nominations such that they can be evaluated and judged on the merits of their research. But I have a strong feeling that there are many women who are qualified and should be nominated for the award.


How I decided to leave the US and pursue a tech career in Europe

Melissa Di Donato moved to Europe to broaden her technology experience with a different market perspective. She planned to stay two years. Seventeen years later, she remains in London as CEO of Suse.

“It was a hard go for me in the beginning. I was entering inside of a company that had been very traditional in a sense.”

Photo: Suse

Click banner image for more How I decided seriesA native New Yorker, Melissa Di Donato made a life-changing decision back in 2005 when she packed up for Europe to further her career in technology. Then with IBM, she made London her new home base.

Today, Di Donato is CEO of Germany’s Suse, now a 30-year-old, open-source enterprise software company that specializes in Linux operating systems, container management, storage, and edge computing. As the company’s first female leader, she has led Suse through the coronavirus pandemic, a 2021 IPO on the Frankfurt Stock Exchange, and the acquisitions of Kubernetes management startup Rancher Labs and container security company NeuVector.

Keep Reading Show less
Donna Goodison

Donna Goodison (@dgoodison) is Protocol's senior reporter focusing on enterprise infrastructure technology, from the 'Big 3' cloud computing providers to data centers. She previously covered the public cloud at CRN after 15 years as a business reporter for the Boston Herald. Based in Massachusetts, she also has worked as a Boston Globe freelancer, business reporter at the Boston Business Journal and real estate reporter at Banker & Tradesman after toiling at weekly newspapers.

Sponsored Content

Great products are built on strong patents

Experts say robust intellectual property protection is essential to ensure the long-term R&D required to innovate and maintain America's technology leadership.

Every great tech product that you rely on each day, from the smartphone in your pocket to your music streaming service and navigational system in the car, shares one important thing: part of its innovative design is protected by intellectual property (IP) laws.

From 5G to artificial intelligence, IP protection offers a powerful incentive for researchers to create ground-breaking products, and governmental leaders say its protection is an essential part of maintaining US technology leadership. To quote Secretary of Commerce Gina Raimondo: "intellectual property protection is vital for American innovation and entrepreneurship.”

Keep Reading Show less
James Daly
James Daly has a deep knowledge of creating brand voice identity, including understanding various audiences and targeting messaging accordingly. He enjoys commissioning, editing, writing, and business development, particularly in launching new ventures and building passionate audiences. Daly has led teams large and small to multiple awards and quantifiable success through a strategy built on teamwork, passion, fact-checking, intelligence, analytics, and audience growth while meeting budget goals and production deadlines in fast-paced environments. Daly is the Editorial Director of 2030 Media and a contributor at Wired.

UiPath had a rocky few years. Rob Enslin wants to turn it around.

Protocol caught up with Enslin, named earlier this year as UiPath’s co-CEO, to discuss why he left Google Cloud, the untapped potential of robotic-process automation, and how he plans to lead alongside founder Daniel Dines.

Rob Enslin, UiPath's co-CEO, chats with Protocol about the company's future.

Photo: UiPath

UiPath has had a shaky history.

The company, which helps companies automate business processes, went public in 2021 at a valuation of more than $30 billion, but now the company’s market capitalization is only around $7 billion. To add insult to injury, UiPath laid off 5% of its staff in June and then lowered its full-year guidance for fiscal year 2023 just months later, tanking its stock by 15%.

Keep Reading Show less
Aisha Counts

Aisha Counts (@aishacounts) is a reporter at Protocol covering enterprise software. Formerly, she was a management consultant for EY. She's based in Los Angeles and can be reached at acounts@protocol.com.


Figma CPO: We can do more with Adobe

Yuhki Yamashita thinks Figma might tackle video or 3D objects someday.

Figman CPO Yuhki Yamashita told Protocol about Adobe's acquisition of the company.

Photo: Figma

Figma CPO Yuhki Yamashita’s first design gig was at The Harvard Crimson, waiting for writers to file their stories so he could lay them out in Adobe InDesign. Given his interest in computer science, pursuing UX design became the clear move. He worked on Outlook at Microsoft, YouTube at Google, and user experience at Uber, where he was a very early user of Figma. In 2019, he became a VP of product at Figma; this past June, he became CPO.

“Design has been really near and dear to my heart, which is why when this opportunity came along to join Figma and rethink design, it was such an obvious opportunity,” Yamashita said.

Keep Reading Show less
Lizzy Lawrence

Lizzy Lawrence ( @LizzyLaw_) is a reporter at Protocol, covering tools and productivity in the workplace. She's a recent graduate of the University of Michigan, where she studied sociology and international studies. She served as editor in chief of The Michigan Daily, her school's independent newspaper. She's based in D.C., and can be reached at llawrence@protocol.com.


Microsoft lays out its climate advocacy goals

The tech giant has staked out exactly what kind of policies it will support to decarbonize the world and clean up the grid.

Microsoft published two briefs explaining what new climate policies it will advocate for.

Photo by Jeremy Bezanger on Unsplash

The tech industry has no shortage of climate goals, but they’ll be very hard to achieve without the help of sound public policy.

Microsoft published two new briefs on Sept. 22 explaining what policies it will advocate for in the realm of reducing carbon and cleaning up the grid. With policymakers in the U.S. and around the world beginning to weigh more stringent climate policies (or in the U.S.’s case, any serious climate policies at all), the briefs will offer a measuring stick for whether Microsoft is living up to its ideals.

Keep Reading Show less
Brian Kahn

Brian ( @blkahn) is Protocol's climate editor. Previously, he was the managing editor and founding senior writer at Earther, Gizmodo's climate site, where he covered everything from the weather to Big Oil's influence on politics. He also reported for Climate Central and the Wall Street Journal. In the even more distant past, he led sleigh rides to visit a herd of 7,000 elk and boat tours on the deepest lake in the U.S.

Latest Stories